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) 0~1 PROGRAMMING FOR COLUMN~CHAINED MATRICES
UNDER VECTIOR PARTIAL ORDERING

Abstract

T —

This paper presents a technique for solving a set of 0=-1 pro-

r gramming problems where the columns can be permuted so that all row

) coefficients are monotone increasing. Such matrices are column-chained

k under vector partial ordering. The technique is based on squivalence
classes that exist on the unit bypercube and for the set of problems des-

cribed, the approach reduces the set of possible solutions to a

fre"

subset in which the optimal must lie. An example is presented.
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1. PRELTMINARIES

We wish to consider a special class of the following O=1 integer

ERSE it Lotttk i

programming problem:

min ¢x
st Ax > b (1)
xi= 0’1’

Ao W oy B SR R b %

where A is an mxn matrix.

Definition 1: A matrix A is a column-chained matrix if the columns of

A can be linearly ordered under a relationship R,
It should be observed that the property of being a column-chained f
is dependent on the particular relationship R. Thus, if R is lexico~

graphic ordering, then any matrix £ is a columu-chained matrix. The

ordering relationship that we shall be concerned with is the standard vector
. . . n e sa .- . ;
partial ordering in R, i.e., a £bhoif ai.S b, for i= 100050 If strict ;

inequality must hold in at least one component we write a < b. The following

Lemwa exnibits the properties tnat will be unecessary for our discussion. F

Lemma 1: A matrix A is a column~chained matrix under vector partial
ordering if and only if rhere exists a permutation P = (pl,

pz,...,pn) of the columns of A such that

a. f<a,
Py T Py
Proof: This is a direct consequence of a linear ordered set and the

for j = 1l,.c..n=land i = 1,...,0.

e Sk Bk s it

ordering relationship.

Column~chained matrices under partial ordering may arise in practical
knapsack or capital budgeting problems. For example, by letting x;= 1 if we
decide to adopt project i, and 0 if not, the column-chained property re-

flects the concept that if project i uses more of one resource than project j,

- ol 2 sttt
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4. With every § pair can be uniquely identified with a vector p = (pl,...,
pk)’ k = [n/2](Ix] greatest integer < x) as follows.
Let k (8) be the number of negative elements of § then p(!.S)
has the properties:
a) 0<p. Sp, S e Sp
b) if P; # 0 then Py < Piiy
) PP =Py e = Py T 0
d) éi = -1 if and only if pj = i for some j.
Thus, the vector p(5) identifies the negative elements of §.
. e i i Sl et bt—— e

s e - 'w——v-—"" w ~— -
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project i uses more of all the resopurces than j. For other techniques for
solving general 0-1 knapsack and capital budesting nroiiems see [2] and [31].
For sake of simplicity, we shall zssume that the matrix (:) for our
problem (1) is ordered according to Lemma 1, i.e.y, P = (1;2,00e4n).
The solution technique developed herein will depend on equivalence
classes for constraints in 0~1 problems, The underlying theory can be
found in Bowman [1}. Those results that are of concern to this paper

are restated for completeness; however, the proofs are not included.

2. PROPERTIES OF CONSTRAINT EQUIVALENCE CILASSES

1. We say that two constraints ax > b and a’x > b' are in the same

equivalenc? class E if the set of feasible 0-~1 points are the same

for ax > b and a'x > b'.

n~l1 ,n-1
2. There are (2-3 - 27 ) such equivalence classes.

3. The 0-1 vertices can be associated i pairs & and =0 where 31= +1.
The implication being if Ei = 41 then x.= 1 and if Bi= -1, x;= 0. This
transformation is accomplished by x = 1/2e 4 1/25 vhere e = (1,1,...,1).
In order to provide uniqueness of identification we require 231 >0

and if £6, = O then &, = ~1.
i 1
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5. 1I1f the constraint 2: > b Ls such that 0 <a 532 sae jan then

s B mm—— e =

1
there exists a function H(p,v} on p and the point v = Zg—.- a, where
b' = b « (1/2)ae, such that if b' > 0 then
H(p,v) > H(p',") p <p' and if b'< 0 then
H(p,v) < H(p',v) p <p'; that is, H is monotone cver the

vector partial ordering.

The values of H are calculated as follows:

(1 if $5,v, > 2
ii 2
1 if _,g.v. =2 and av > b
i1 2 -
0 if zgivi=-% and av <t
3 . 0 - n
H(p(8),v) = ﬁ 0if -2 <Fv, <2
5 = - - <b
0 if ¢ 1._vi > and av
-1 if S8.v, = -~ = and av > ¥
“ii 2 -
iy Q1
- i K - -
-1 if 9B, 2

6., Since H(p,v) is monotone over the partial ordering p, we need know

only the following sets to know H(p,v). If b' <0
+

P’ = {p|H(p,v) = 1, and H(p',v) = O, or -1 for p' < p}
and P~ = {le(p,v) = ~1 and H(p',v) = 0, or 1, p' > p}

and if b' > 0 then

Pt = {p|H(p,v) = 1 and H(p',v) = 0 or -1 p' > p}

P = {p|H(p,v) = -1 and H(p",v) = O, or +1, p' _<_p}.

An algorithm for calculating the sets Pt and P~ is presented in [1].

7. The values of H(p,v) and consequently the sets Bland P~ classify § and -8

and their asscciated x values into feasible and infeasible sets as follows:

a) x=1/2(e + §) and x = 1/2(e ~ 3) are both feasible to ax > b if

and only if b' < 0 and H(p(3),v) = O;that is, b' < 0 anc for some

p' € P and some p" € B, p' < p(3) <"
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b)

c)

d)
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x = 1/2(e + §) is feasible and x = 1/2(e - 3) is infeasible if

and only if either

1) b' >0 and H(p(8),v} = 1; that is, b' > 0 and for some
p' €, p(§) <p'.

or

2) b' <0 and H(p(3),v) = -1; that is, b' < 0 and for some
p' €27, p(3) <p'.

x = 1/2(e + 8) is infeasible and x = 1/2(e ~ 5) is feasible

if and only if either

1) b' >0 and H(p(§),v) = ~-1; that is, b' > 0 amd for some
p' € P, p(8) > p’

or

2) b' <0 and H(p(3), v) = 1; that is, b' < 0 acd for some
p' € F', p(3) > b!.

1/23 .od ~1/28 are both infeasible if and only if b' > 0 and

H(p(8),v) = 0; that is, b' > 0 and for some p' € gt and

p" € P, p' <p(B) <p".
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Definition 3:
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3. EQUIVALENCE CIASSES ON COLUMN-CHAINED MATRICES

When A is a column-chained matrix under vector partial ordering
we note that properties 4 and 5 along with Lemma 1 implies that the
functions Hi(p,v) associated with each constraint are monotone for the
same vectors p; that is, there is no need to permute the Xy to satisfy
ay < a, L eee < a for any constraint. Consequently, each constraint
associates the points 1/2(e + §) with exactly the same p, It should
be noted that if the matrix is not cdlumn~chained (under vector partial
ordering) then the points 1/2{e + 5) are not associated with the same

vector p for each constraint.

In order to combine the relationships on the vectors p we need to
iatroduce several concepts.

Definition 2: The pomax (pomin) is the cperation that cinooses the set
of maximum (minimum) elemeats from a partially ordered
set.

0f course, since the set is only partially ordered the pomax
(pomin) may not be a unique elemeat but, is rather a set of elements,
For example, using this notation we can describe the gets B and P~

(from property 6) as

-1} .if b* > 0.

pomin{ p|{H(p,v)

"1} if b' S O.

1} ifb' <O

pomax{p|H(p,v)

+ fpomin{plﬁ(p,v)
ro={
Lpomx{plﬂ(p,\r)

1} if b' > 0.

A Jdescriptive set, of Ax > b is a set of sets.that com-

pletely classify all 0,1 points of Ax > b into feasible

and infeasible.

L L A B A




For example, if Ax > b consists of a single constraint then the sets
P' and P~ form a descriptive set.
We shall now develop a descriptive set for the constraints of (1)

when A is column-chained using equivalence class Property 6. We let

{p';, P;} be the sets of Property 7 for goanstraint i, i = l,,4e,n.
We define index sets I = {i|b} <0} and J = {i|b} >0}. To facilitate

the following development, we define for each constraint i € I

P?' = pomax {p|H(p,v) = 0 cr -1}
and
P - pomin{p|H(p,v) = O or +1}

i
These sets are direct by-products of the algorithm to calculate P: and
P; presented in [1] and therefore, involve no additional computations.
In order to describe the union of the classifications of a given p, we

make the following set definition:

Let Q‘I)* = pomin{p|p € U Pg+}

i€l
O~ Ow
Q = pomax{p|p € U P}
i€l
+ . +
Q, = pomm{p'p € y P}, and
J . i
ies
Q; = pomax{plp€ U P} .

i&J
These sets then classify the 0.1 points according to the following theorem.
Theorem 1: For the points 1/2(e + §) and 1/2(e - 8) we have
a) 1/2(e + §) is feasible if and only if p(§) é p' for
some p' € Qg*' and p(8) s p*¥ for some p" € Q::;
b) 1/2(e - §) is feasible if and only if p(8&) 2 p' for
some p' € Q(;‘ and p(5) _:_-_2 p" for some p" € Q;.
Proof: We shall only prove pa.'. (a) since the proof for (b) is similar.
Assume 1/2(e + §) is feasible then for all i € I we have Hi(p(ﬁ) sV) = =1

or 0.by Property /. And, by the monotonicity of H(-) (Property 5) we have

Syt SAUs G A s R
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that Hi(p(é),v) = -lor 0 for all 1 € I if and only if p(6) < p' for some

it

p' € Q?‘. Similarly, for all i € J we must have Hi(p(ﬁ) ,v) = +1 and again
this is true if and only if §(8) < p" for some p" € Q:;. Now assume
p(6) < p' for some p' € Q(IH' and p(6) < p" for some p" € Q:; by monotonicity
Hi(P(ﬁ)) = -1 or O for all i € I and Hi(p(s)) =41 for all i € J. By

property 7 this implies 1/2(e + 8) is feasible for all constraints. The

proof of (b) is similar,

O+ 0= +

Corollary 1.1: The set of sets {QI ,QI ,QJ and Q}} is a descriptive

set.

Proof: Obvious.

Corollary 1.2: The points 1/2(e + &) and. 1/2(e - §). are both feasible
if and only if Q} = Q; =@ (i.e.y J=0).

Proof: Assume both points are feasible and Q: and Q; are not null

then p" < p(8) < p' where p' € Q} and p" € Q;; however, by the monotoni-

city of H(*) we have p" > p' a coatradiction.

Having thus been able to classify the feasible and infeasible points

of Ax > b we now address the problem of optimizing cx over the feasible

points.

4, OPTIMIZATION OVER THE DESCRIPTIVE SETS

Problem (1) can‘ .ted as min cx over the feasible points given
by Theorem 1., We assume that the matrix (z) is column-chained under
partial ordering. Now since we are interested in minimization, we want
a z° such that {ex <Zo, Ax > b} has no 0,1 solution while {cx X 20,
Ax > b} has at least one solution. This 2% 1s the minimum value. Our
approach will be to find the value of Z0 by examining the equivalence

classes of cx <Z. 1In order to do this we note that ¢x <Z is equivalent

to =¢cx > ~Z and substituting x = e = x'_we have finallv .

I TR - WP e
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-8-
cx' >ce = Z. (2)
Now since (z) is column~chained we have that ¢ S¢€yJeee S 80 that

elements of p(§) refer to the same pairs 1/2(e + 8) as the constraints. Now

let {P;, P;:} be the sets of Property 6 associated with (2). We now

need to relate the feasibility information in these sets back to problem 1,
Since x' = e = x and the inferences from the sets {P;, P;}

are on x' = 1/2(= + 3), we can translate these to the variable x by simple

substitution thus,

e -1/2(e+ 8) = x

or x = 1/2(e ¥+ B). 3)

Equation (3) says that the inferences from property 7 are just the

reverse for equation (2). Thus, for example, Property 7b becomes

x = 1/2(e = §) is feasible to cx <2 and x = 1/2(e + §) is
infeasible to cx <Z if and only if either

1) Zz'=1/2ce =2 >0 and H(p(§),v) = 1

or

2) z' <0 and H(p(3),v) = -1

As a consequence we have that

x = 1/2(e - §) is feasible when either Z' > 0 and H(p,v) = +1

or Z' <0 and H(p,v) = 0 or -1 and that
x = 1/2(e + §) is feasible when either Z' > 0 and H(p,v) = -1
or Z' <0 and H(p,v) = O or +1.
We can thus, summarize the feasible set for a fixed upper bound Z on the

objective function.
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Theorem 2: Let cx* = min{cx|x =1/2(e + £) and p(d) € Z+} and

Proof: Let Z = cxo as defined above. Consider the set of feasible solu-
1 H . f .

Lemma 2: The set of feasible zero-one solutioqs to {cx <Z, Ax 2 b} is:

A} 2
i i

a) x=1/2(e + §) is feasible 1f add only if @ !
1) p(8) < p" for soge p'€ prs

2) p(3) < p" for PIEQ;

and 3) (a) 1if z' > 0, p(g) _z p* for someg p* € P; “ o

(b) if 2° ..<.-0: p(%) :Zp* for somempf__eﬂlf;‘i"
b) x = L/2(e « §) is feasible ‘if' and only if ‘ Py
1) . p(8) 2 p' for some p' € Q?[' A |
2) p(® g!p.. for some p" € ’Q':] : o K
and 3) (a) if 2! >'o, p(8) < p* for_ some p*. € p* - _‘ L

k3 0*“
(b) 1f Z' <0; p(6) <- p* for some p* G P

Proof: Conditions (1) and (2) for each, part comeé from Theorem 1, Cone=

dition 3 is just a restatement of the discussion prior te the 1emma. ;
It is this ‘lex_gma‘that is the basis for our analysis of the optimal

] . 1
solution. In order to obtatia theloptimal value we define the sets

pomia{p|p € Q?’r U Q“;} '

Z+

"

N
]

pom-?x{plp € Q(I)' U Q;}‘ ‘ ‘

' . - i
We observe that x = 1/2(ei+ §) is feasible to Ax > b if and only if :
1
p(g) < p for some p € Z+ and that x = I/2(e - §) is feasible if and only .
if p(g) 2 p for some p € i-.i

}

cx2 = min{cxlx = 1/2(e - _3) and p(g) € Z-} then ‘the optimal

1 2 ’ :

solution to (1) is cxo = min(cx ,cx" ).

0

tions to {cx 5‘20 - ¢ and Ax 2 b} for ¢ > 0. Now for p' _€ Z+,_“x_ = 1/2(e + §)
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is infeasible to cx < Z0 - ¢ by definition of Zo. Consequently, if

(Z0 - ¢)' >0 then Hz(p') =+ 1 or 0 and for any p < p' we have Hz(p) =+ 1 or O.
' : Since the only feasible p associated with x = 1/2(e + §) are p é p!

for some p' € Z"; there are no points x = 1/2(e + §) that are feasible to

Ax > b and cx 520 - ¢. On the other hand if (ZO - €)' <0 then l&(p') = =1

! : % and for any p <p' Hz(p) = =1 again implying that there are no points of

the form x = 1/2(e + &) that are feasible to both Ax >b and cx 20 - ¢,

povintel ——— . - e m — e

The proof on Z~ is similar. Thus, there are no solutions to {cx SZO - ¢,

Ax > b} for any € > 0 ané there exists one solution, xo, when ¢ = 0.

i Thus, xO is the optimum solution, and the theorem is proved.

-

The impiication of Theorem 2 is that by the use of equivalence
) : ~ classes on constraints one can reduce problem (1) (when (:) is column=-
chained under partial ordering ) to the search for an optimal soletion
} . ) over two sets Z+ and 2",
<c

Corollary 2.1: For any : such that 0 <c¢ L eee 2 c, the optimal

1 2

) ' lies ia the set Z+ uz.

This corollary emphasizes the implicatioans of the ordering that as

long as we maintain the same constraint set and the cost fuaction changes
but preserves the column-chained property of (Z) we need only investi-

: gate the points associated with zt vz,

We now illustrate this technique with an example.
! * Example:

The following knapsack problem is taken from Truath and Woolsey

[41.

f ) LY 9 | ' ' ] -4 ] * ' ]
f max 40x1+ 18x2+ 17x}) + 15x! + 15x +10x6+ 5x7+3x8+x9

|
3 4 5 * X9

T4 oget ' ' ' ' ) ' ) '
5 30x1 + 25x, + 20::3 + 18x4 + 17*5 + ll.x6 + 5x7 + 2x8 + xg + xlOS 100.
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In order to make this problem in column-chairﬂad format, we take the
permutation (10,9,8,7,6,5,4,3,2,1). In addition, we must reverse the

sign of the inequality and then substitute x' = e = x to get positive

coefficients. We are left with

min Xy + x2 + 3x3 + 5x4 + 1()x5 + 15x6 + 15x7 + 17x, + 18::9 + 20){10 - 105

8

Set. 4+ x, 4+ 2x

i B

We note that b' = b - (1/2)ae = 30 ~ 65 = =35 is negative. Using the

algorithm in [1] we have

P- = {(030s0’597)’(03092’596),(03192:339)’(1s233:4:8)}’
Po." {(0,0,0,0,10),(0,0,0,4,9),(0,0,0,5,8),(0,0,0,6,7),(0,0,1,5,7),
(0'9'0133'5s6)3(0’192s5a6)}

p®- {1,7,8,9,10}
Pr=9¢.

Now points of the form x = 1/2(e + §) are feasible for p < @,7,8,9,10)

since Pm = (1,7,8,9,10). Note that since n is even (1,7,3,9,10)-is the

longest P vector and therefore, all x = 1/2(e + §) are feasible. Sim~-

ilarly x'= 1/2(e - §) is feasible for any p > p' where.p'.€ PO-. There~
O+ 0

fore, we have Z+ = 2" and Z_ = P . The table below gives the various

values of the objective function for the sets Z+ and 2~

3 + Sxa 4 llx5 + 17x6 + 18x7 + 20x8 + 25x9 + 30x10 >+30
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1
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4
Y
%:
Set P x's=1 ex g
Al 1,7,8,9,10 2,3,4,5,6 34 ;
z” 0,0,0,0,10 10 20
0,0,0,4,9 4,9 23
0,0,0,5,8 5,8 27
0,0,0,6,7 6,7 30
0,0,1,5,7 1,5,7 26 _
0,0,3,5,6 3,5,6 28 T
0,1,2,5,6 1,2,5,6 27

Examining the values of cx we have 2%.= 20 and x° = ¢0,90,0,0,0,0,0,0,0,1).
Trarslating back to the original problem, we have the maximizing solu-

tion as x' = (0,1,1,1,1,1,1,1,1,1) with a maximum value of 85. We further
note that for any ¢ such that 0 < ¢ = <, L eee £ c, the optimal solution

for the constraint above will be one of the eight points in Z+ uez-.
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5. ZXTENSIONS TC REVERSED INEQUALITIES |

In the discussion of the optimization procedures we noted that

reversing the direction of the inequality had the effect of reversing

the feasibility inferences on +5 to -§ and from -8 to +8§ under property

7. Consequently, if our problem is of the form §
3
3
} min cx §
> ;
’ S.t. Alx P b1 ;
) <
ax <D, (4) 3
x,= 0,1 4
p y b3 E:
where l::li i3z a column=chained matrix under partial ordering then §
2° k-
) Azx < b2 can be treated in the same manner as the objective %
function in section 4. Consequently, an extension of Lemma 2 provides ?3
2.
the set of feasible solutions. First, we define sets %
0+ . o+ S
Qp = pomin{p[p €U P}
) 1 i€l
1
0- 0~
Qy = pomax{p|p €U P.°}
1 i€l
1
+ +
Q = pomin{p‘p €U Pi}
1 i€y 1
Q; = pomax{p|p €U P},
1 16.11
= [ilpY = v
where the sets I, {1[b1i§ 0}, 3, {i'bli > 0} and the sets of Q are
P those defined in section 3 for the coastraints Ax 2 bl. In a similar
mananer for coastraints Azx <b L e define:
O+ . O+
Q, = pomin{p|p € U P}
2 1612
]

o~ —— e aa e
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r 0' 0.
Q= pomax{p|p € y P }
2 ie,
Q" = pominfp{p € y P} and
J . i
2 16.]2
Q = pomax{p|p €y P}
2 i€

2

where the sets I, = {1'1/2aie - b,

; S0} and g, = {1]1/2a.e - b,y

By arguments similar to that of Section 4 we have

Lemma 3: The set of feasible zero-one solutions to {Alx >b

a) x= 1/2(e + &) is
1) p(8) <p' for
2) p(d) ;_<-p" for
3) p(8) 2 p* for

and 4) p(8) 2 p*¥*for

b) x= 1/2(e - §) is
1) p(8) >p* for
2) p(8) > p" for
3) p(d) < o* for

and 4) p(%) < p**for

1

feasible if and only if
O+
some p' €
e
some p" €
%)
some p* €
%,

some p¥¥E Qf -
2

feasible if and only if
0-
some p' €
4
some p" €
P Qi L
some p* € QJ

some p**€ QI
2

P —— TP 7Y A 5 KR

> 0}.

and A,x < bz} is

We accordingly modify the definitions of Z+ and 2 to include the

implications of Lemma 3. Thus, we have

2" = pomin {p|p € Qg” U le,
1

Z

= pomax (PP Q%" U Q7 ,
L 9

p* eq'g and p*¥ qu"'}.
2

2

— i i i Men s atifhe.. alen,

p 2 p*, and p > p** for some

p* € Q.;z and p** € Q(I);} and

p < p* and p < p** for some
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To optimize the new problem we now apply Theorem 2 to the above sets.
Again, the equivalence classes have reduced the solution of (4)

to a search over the two sets Z+ and Z-.
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